APPENDIX 12.1

National standards for ambient air pollutants in Ireland have generally ensued from Council Directives enacted in the EU (& previously the EC & EEC). The initial interest in ambient air pollution legislation in the EU dates from the early 1980s and was in response to the most serious pollutant problems at that time. In response to the problem of acid rain, sulphur dioxide, and later nitrogen dioxide, were both the focus of EU legislation. Linked to the acid rain problem was urban smog associated with fuel burning for space heating purposes. Also apparent at this time were the problems caused by leaded petrol and EU legislation was introduced to deal with this problem in the early 1980s.

In recent years the EU has focused on defining a basis strategy across the EU in relation to ambient air quality. In 1996, a Framework Directive, Council Directive 96/62/EC, on ambient air quality assessment and management was enacted. The aims of the Directive are fourfold. Firstly, the Directive's aim is to establish objectives for ambient air quality designed to avoid harmful effects to health. Secondly, the Directive aims to assess ambient air quality on the basis of common methods and criteria throughout the EU. Additionally, it is aimed to make information on air quality available to the public via alert thresholds and fourthly, it aims to maintain air quality where it is good and improve it in other cases.

As part of these measures to improve air quality, the European Commission has adopted proposals for daughter legislation under Directive 96/62/EC. The first of these directives to be enacted, Council Directive 1999/30/EC, was passed into Irish Law as S.I. No 271 of 2002 (Air Quality Standards Regulations 2002), and has set limit values which came into operation on 17^{th} June 2002. The Air Quality Standards Regulations 2002 detail margins of tolerance, which are trigger levels for certain types of action in the period leading to the attainment date. The margin of tolerance varies from 60% for lead, to 30% for 24-hour limit value for PM_{10} , 40% for the hourly and annual limit value for NO_2 and 26% for hourly SO_2 limit values. The margin of tolerance commenced from June 2002, and started to reduce from 1 January 2003 and does so every 12 months by equal annual percentages to reach 0% by the attainment date. A second daughter directive, EU Council Directive 2000/69/EC, details limit values for both carbon monoxide and benzene in ambient air. This has also been passed into Irish Law under the Air Quality Standards Regulations 2002.

The most recent EU Council Directive on ambient air quality was published on the 11/06/08. Council Directive 2008/50/EC combines the previous Air Quality Framework Directive and its subsequent daughter directives. This has also been passed into Irish Law under the Air Quality Standards Regulations 2011 (S.I. 180 of 2011). Provisions were also made for the inclusion of new ambient limit values relating to $PM_{2.5}$. In regards to existing ambient air quality standards, it is not proposed to modify the standards but to strengthen existing provisions to ensure that non-compliances are removed. In addition, new ambient standards for $PM_{2.5}$ are included in Directive 2008/50/EC. The approach for $PM_{2.5}$ is to establish a target value of 25 µg/m^3 , as an annual average (to be attained everywhere by 2010) and a limit value of 25 µg/m^3 , as an annual average (to be attained everywhere by 2018), coupled with a target to reduce human exposure generally to $PM_{2.5}$ between 2010 and 2020. This exposure reduction target will range from 0% (for $PM_{2.5}$ concentrations of less than 8.5 µg/m^3 to 20% of the average exposure indicator (AEI) for concentrations of between $18 - 22 \text{ µg/m}^3$. Where the AEI is currently greater than 22 µg/m^3 all appropriate measures should be employed to reduce this level to 18 µg/m^3 by 2020. The AEI is based on measurements taken in urban background locations averaged over a three-year period from 2008-2010 and again from 2018-2020.

Although the EU Air Quality Limit Values are the basis of legislation, other thresholds outlined by the EU Directives are used which are triggers for particular actions. The Alert Threshold is defined in Council Directive 2008/50/EC as "a level beyond which there is a risk to human health from brief exposure and at which immediate steps shall be taken as laid down in Directive 2008/50/EC". These

steps include undertaking to ensure that the necessary steps are taken to inform the public (e.g. by means of radio, television and the press).

The Margin of Tolerance is defined in Council Directive 2008/50/EC as a concentration which is higher than the limit value when legislation comes into force. It decreases to meet the limit value by the attainment date. The Upper Assessment Threshold is defined in Council Directive 2008/50/EC as a concentration above which high quality measurement is mandatory. Data from measurement may be supplemented by information from other sources, including air quality modelling.

An annual average limit for both NO_x (NO and NO_2) is applicable for the protection of vegetation in highly rural areas away from major sources of NO_x such as large conurbations, factories and high road vehicle activity such as a dual carriageway or motorway. Annex III of EU Directive 2008/50/EC identifies that monitoring to demonstrate compliance with the NO_x limit for the protection of vegetation should be carried out distances greater than:

- 5 km from the nearest motorway or dual carriageway
- 5 km from the nearest major industrial installation
- 20 km from a major urban conurbation

As a guideline, a monitoring station should be indicative of approximately 1000 km² of surrounding area.

Under the terms of EU Framework Directive on Ambient Air Quality (96/62/EC), geographical areas within member states have been classified in terms of zones. The zones have been defined in order to meet the criteria for air quality monitoring, assessment and management as described in the Framework Directive and Daughter Directives. Zone A is defined as Dublin and its environs, Zone B is defined as Cork City, Zone C is defined as 23 urban areas with a population greater than 15,000 and Zone D is defined as the remainder of the country. The Zones were defined based on among other things, population and existing ambient air quality.

EU Council Directive 96/62/EC on ambient air quality and assessment has been adopted into Irish Legislation (S.I. No. 33 of 1999). The act has designated the Environmental Protection Agency (EPA) as the competent authority responsible for the implementation of the Directive and for assessing ambient air quality in the State. Other commonly referenced ambient air quality standards include the World Health Organisation. The WHO guidelines differ from air quality standards in that they are primarily set to protect public health from the effects of air pollution. Air quality standards, however, are air quality guidelines recommended by governments, for which additional factors, such as socioeconomic factors, may be considered.

APPENDIX 12.2

The inputs to the Design Manual for Roads and Bridges model consist of information on road layouts, receptor locations, annual average daily traffic movements, annual average traffic speeds and background concentrations. Using this input data the model predicts ambient ground level concentrations at the worst-case sensitive receptor using generic meteorological data.

The Design Manual for Roads and Bridges underwent an extensive validation exercise as part of the UK's Review and Assessment Process to designate areas as Air Quality Management Areas (AQMAs). The validation exercise was carried out at 12 monitoring sites within the UK Department for Environment, Food and Rural Affairs national air quality monitoring network. The validation exercise was carried out for NO_x, NO₂ and PM₁₀, and included urban background and kerbside/roadside locations, "open" and "confined" settings and a variety of geographical locations.

In relation to NO_2 , the model generally over-predicts concentrations, with a greater degree of over-prediction at "open" site locations. The performance of the model with respect to NO_2 mirrors that of NO_x showing that the over-prediction is due to NO_x calculations rather than the NO_x : NO_2 conversion. Within most urban situations, the model overestimates annual mean NO_2 concentrations by between 0 to 40% at confined locations and by 20 to 60% at open locations. The performance is considered comparable with that of sophisticated dispersion models when applied to situations where specific local validation corrections have not been carried out.

The model also tends to over-predict PM_{10} . Within most urban situations, the model will over-estimate annual mean PM_{10} concentrations by between 20 to 40%. The performance is comparable to more sophisticated models, which, if not validated locally, can be expected to predict concentrations within the range of $\pm 50\%$.

Thus, the validation exercise has confirmed that the model is a useful screening tool for the Second Stage Review and Assessment, for which a conservative approach is applicable.

APPENDIX 12.3

A dust minimisation plan will be formulated for the construction phase of the project, as construction activities are likely to generate some dust emissions. The potential for dust to be emitted depends on the type of construction activity being carried out in conjunction with environmental factors including levels of rainfall, wind speeds and wind direction. The potential for impact from dust depends on the distance to potentially sensitive locations and whether the wind can carry the dust to these locations. The majority of any dust produced will be deposited close to the potential source and any impacts from dust deposition will typically be within two hundred metres of the construction area.

In order to ensure mitigation of the effects of dust nuisance, a series of measures will be implemented. Site roads shall be regularly cleaned and maintained as appropriate, dry sweeping of large areas should be avoided. Hard surface roads shall be swept to remove mud and aggregate materials from their surface while any un-surfaced roads shall be restricted to essential site traffic only. Furthermore, any road that has the potential to give rise to fugitive dust must be regularly watered, as appropriate, during dry and/or windy conditions.

Vehicles using site roads shall have their speeds restricted where there is a potential for dust generation. Vehicles delivering material with dust potential to an off-site location shall be enclosed or covered with tarpaulin at all times to restrict the escape of dust. Access gates to be located at least 10m from receptors where possible.

Public roads outside the site shall be regularly inspected for cleanliness, and cleaned as necessary. Before entrance onto public roads, trucks will be adequately inspected to ensure no potential for dust emissions. Inspect on-site haul routes for integrity and instigate necessary repairs to the surface as soon as reasonably practicable. Record should be kept of all inspections of the haul routes and any subsequent action in a site log book.

Material handling systems and site stockpiling of materials shall be designed and laid out to minimise exposure to wind. Sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place. Water misting or sprays shall be used as required if particularly dusty activities are necessary during dry or windy periods, activities such as scabbling should be avoided. Bulk cement and other fine powder materials are delivered in enclosed tankers and stored in silos with suitable emission control systems to prevent escape of material and overfilling during delivery.

At all times, the procedures put in place will be strictly monitored and assessed by the contractor. In the event of dust nuisance occurring outside the site boundary, satisfactory procedures will be implemented to rectify the problem. Dust monitoring should be put in place to ensure dust mitigation measures are controlling emissions. Dust monitoring should be conducted using the Bergerhoff method in accordance with the requirements of the German Standard VDI 2119. The Bergerhoff Gauge consists of a collecting vessel and a stand with a protecting gauge. The collecting vessel is secured to the stand with the opening of the collecting vessel located approximately 2m above ground level. The TA Luft limit value is 350 mg/(m²*day) during the monitoring period between 28-32 days.

The Dust Minimisation Plan shall be reviewed at regular intervals during the construction phase to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practice and procedures. The name and contact details of a person to contact regarding air quality and dust issues should be displayed on the site boundary, this notice board should also include head/regional office contact details. Community engagement before works commence on site should be put in place, including a communications plan.

All dust and air quality complaints should be recorded and causes identified, along with the measures taken to reduce emissions. This complaints log should be available for viewing by the local authority, if requested. Daily on and off-site inspections should occur for nuisance dust and compliance with the dust management plan. This should include regular dust soiling checks of surfaces such as street furniture, windows, and cars within 100m of the site boundary. Cleaning should be provided if necessary.